

MPEG-4 Demystified

Apple Worldwide Developers Conference

24 June 2003

Rob Koenen

President, MPEG-4 Industry Forum Chairman, MPEG Requirements Group Vice President, InterTrust Technologies

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4
- Deployment of MPEG-4
- About M4IF

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

What is MPEG-4?

- The Media Standard
 - Set by ISO/IEC
- An interoperable cross-platform ecosystem
- An architecture and coding methods for representing rich multimedia content
 - beyond video and audio, supporting synthetic content, raster and vector graphics
- Designed for all digital multimedia platforms

Where does it come from?

From Moving Picture Experts Group, who also did:

- MPEG-1: Standard for Video CD, CD-I, web, digital photo cameras
 - MPEG-1 Layer III audio codec (MP3)
- MPEG-2: the DVD and digital TV standard

And also:

- MPEG-7: standard for description of content
- MPEG-21: framework for interoperable use and exchange of digital media

MPEG-4 Vision

- No convergence, but proliferation of multimedia over different networks, terminals.

- Common multimedia technology necessary that supports:
 - Broadcast
 - Communication
 - Retrieval
 - online
 - packaged media

One Single Technology for ...

Write once - Play everywhere

MPEG-4 In

Applications of MPEG-4

- Mobile devices
 - Low datarates, errors, scalability
- Broadcast
 - New, on-demand services
 - HD broadcast
 - 'MPEG-4 over MPEG-2'
- Streaming services
 - Scalability, low to medium datarates, interactivity
- Packaged Media (DVD)
 - Interactivity,
 - HD through higher compression rates

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

The Nature of MPEG-4

- Object-based multimedia content representation standard
- Revolutionary Systems Layer
- State-of-the art coders, responsibly upgraded
- Profiles and Levels restrict complexity and guarantee interoperability

The MPEG-4 Ecosystem

Console

DVD Player

Consumption

Video (MPEG-1, MPEG-2, AVI)

Interaction

2D/Images (JPEG, PNG, HTML)

Audio (MP3, AAC, CELP, Other Audio)

Animation (Flash, Smil)

Creation

The Scene Tree

Recapping: MPEG-4 is about the Coding of Audiovisual Objects

- Audiovisual Scene is with 'objects'
- These Objects can be of different nature
- Compositor puts objects in scene
- Efficient, Real-time Binary scene description language (BIFS)
- Coding scheme is optimal for object type
- Principle is fully independent of bitrate

MPEG-4 Supports a Variety of 'Objects'

- Visual
 - Video
 - Animated face & body;
 - 2D and 3D animated meshes
 - Text and Graphics
- Audio
 - General audio mono 5.1 channels
 - Speech
 - Synthetic sounds ('Structured Audio')
 - Text-to-speech
 - 'Environmental spatialization'

The Parts of the MPEG-4 Standard

presentation

decoding

1. Systems

6. DMIF

demux & buffer

transport interface

7. MPEG-4 on IP

In principle not in standard

4. Conformance

Reference SW

5.

24 June '03

All content property of the MPEG-4 Industry Forum © Copyright 2002

16

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

Visual Media Object Types in MPEG-4

- Video from 10 1,000,000 Kbit/s
 - Multiple rectangular or arbitrary shape objects in the scene
 - Scalable Interlaced and Progressive
- 'Sprites' (e.g. backgrounds): send once, then warp
- Computer-generated visual information
 - Synchronized graphics & animated text
 - Face and body animation,
 - animated meshes with moving texture,

Audio Media Objects in MPEG-4

- Audio from 4 kbit/s to 64 kbit/s/channel
 - Arbitrary number of objects in the scene
 - MPEG-4 AAC, TWINVQ
 - > 4kbit/s: Harmonic and Individual Lines plus Noise' (HILN)
- Voice from 2 kbit/s to 24 kbit/s
 - 2-4 kbit/s: HVXC (Harmonic Vector eXcitation Coding)
 - 4-24 kbit/s: CFLP:
- Large step + Fine Grain Scalability
 - 1 kbit/s steps through Bit-Sliced Arithmetic Coding

MPEG-4's Synthetic Audio Objects

- Structured Audio
 - SAOL (SA Orchestra Language)
 - SASL (SA Score Language)
 - Great 'music' at very low bitrates
- Coded form of MIDI
- Wavetable synthesis for simple decoders
 - Including effects
- Text-To-Speech (interface!)
 - To complement face/body animation

MPEG-4 Systems

- Binary Scene Description
 - VRML concepts + Streaming + Real Time + Efficiency
 - Support for content in scene from different sources
 - Allows interaction (local/remote)
 - 2D and 3D
 - Dynamic scene updates and scene animation
- XMT: eXtensible MPEG-4 Textual Format
 - Textual format for BIFS
 - Includes some SMIL harmonization

MPEG-4 Systems

- Predictable behavior of a decoder and decoded content:
 - Tight synchronization of A, V, synthetic, graphic elements
 - Buffer management
- Flextime
 - Spring-like timing model (a-la SMIL)
- IP management and protection (IPMP) Interface
 - Standard interface to proprietary DRM Systems
 - MPEG-21 to bring more interoperability in DRM
- File format MP4 (based on QuickTime)

MPEG-4 Systems (cntd.)

- MPEG-J(ava)
 - API for complicated content behavior,
 - API's to network / terminal / UI resources
 - 'Application Engine'
- Audio Rendering
 - Specify downmix from arbitrary number of channels
 - Environmental spatialization
 - modeling of environment for spatial sound reproduction
 - Physical and perceptual model

Profiles & Levels

- Conformance points are "Profiles@Levels"
 - A bit like in MPEG-2
- Profiles determine tool set
 - E.g. B frames, ¼ pel Motion Compensation
- Levels limit complexity
 - E.g. MacroBlocks/sec, Complexity Units in Audio
- Profiles are convergence point for Industry Standards built on MPEG-4
 - vehicle for market decisions and uptake
 - e.g. Internet Streaming Media Alliance

Profile Dimensions:

- Visual (natural, synthetic, natural + synthetic)
- Audio (natural, synthetic, natural + synthetic)
- Graphics

Media Profiles

- Scene Description (Scene Graph)
 - Tools to describe and manipulate scene
- MPEG-J (Main and Personal)
- Object Descriptor (Synch and Buffers)
- MPEG does not prescribe how to combine these
 - That's what other industry fora do

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

MPEG-4 Advanced Video Coding

- Also standardized as ITU-T H.264
 - Part 10 of MPEG-4 standard
 - Also known as the "JVT codec"
- Built by world's top video coding experts from ITU and MPEG in Joint Video Team (JVT)
- Best quality/complexity trade-off
 - Better than WM9, according to industry leader LSI Logic
 - Improvements will continue
- Significantly further reduces video bitrates
- Fits into the MPEG-4 framework
 - Will coexist with MPEG-4 part 2 in market

High Efficiency Advanced Audio Coding

- CD quality @ 48kbps; High quality @ 32kbps
 - Achieved through "Spectral Bandwidth Replication"
 - predict upper half of spectrum from lower half
 - Forward and backward compatible with 'normal' AAC
- Amendment (addition) to MPEG-4 Audio
- Already operational in XM radio, chosen for Digital Radio Mondiale ("DRM")
- Tested as best codec by EBU (European Broadcasting Union) over Windows, Real

EBU listening test results for 48Kbps stereo

LPF = Low Pass Filter.

aacPlus is brand name for High Efficiency AAC.

mp3PRO is brand name for MPEG-1 Layer III with Spectral Band Replication

EBU = European Broadcasting Union

29

Other developments

- Animation Framework eXtension (AFX)
 - Unified framework for interactive animation and graphics
- Work on 3D Video coding is in Requirements phase
- Work on lossless audio coding is entering development phase

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

Standards Make Sense. They ...

- ... fuel innovation (GSM, WLAN/802.11, ...)
- ... survive the test of time (PAL, NTSC, MP3, ...)
- ... prevent expensive format churn (VHS, CD, ...)
- ... help markets mature (CD, DVD, MPEG-2, ...)
- ... provide an interoperable ecosystem of tools and equipment: different providers make what they excel in
- No vendor lock-in avoid channel conflicts
- Market-based price control mechanisms
- Multi-vendor sourcing of equipment
- No monopolies no single vendor controls the format

MPEG-4 has Clear Benefits

- Code once, use across platforms and players
- Users pick their favorite players, devices
- Content producers pick their favorite tools
- Providers only need to stream in one format
- Competition drives quality up

(R) evolution

- A revolution in functionality
 - Designed from the start for interactivity
 - State of the art compression; responsible upgrades
 - Object-based = intrinsic flexibility
 - Profiles, Levels limit complexity, guarantee interoperability
 - Offers synthetic content
 - Local rendering of 2D & 3D graphics and audio
- An evolution in infrastructure
 - Allows all types of 'casting': unicast, multicast, broadcast...
 - on all network types, no need for new networks or transports
 - Leverage existing MPEG-2 and other infrastructures

Business Benefits

- MPEG-4 saves money
 - More efficient use of bandwidth
 - Repurpose existing content
 - No need to duplicate work when adding value to assets
 - Integrate into existing MPEG delivery environments
 - Used on all types of network, including IP
- MPEG-4 makes money
 - Use existing content and infrastructure in new ways
 - Add new dimensions to content, including interactivity
 - Low-risk / high-return path for new entrants

Risks of Proprietary Technology

- Third party business and pricing models
- Proprietary, confidential 3rd party technology roadmaps
 - May change without warning
- Potential channel conflicts
 - Supplier also competitor
 - License includes more "bundled features" than required
- Single sourcing problems

Worldwide MPEG-4 Forecast

*Includes standalone MPEG-4 chips and cores embedded in processors Source: ISUPPLI CORP.

Improvement Through Competition

- Proprietary vendors underrate MPEG-4 quality:
 - Comparisons with early, non-optimized codecs
 - 'Industry-standard' video quality does not exist!
- MPEG standardizes the minimum: only decoders
 - Competition on encoding and post-processing
- MPEG-2 bit-rates have reduced by over 50%
 - after the standard was frozen in 1996
 - without upgrading decoders
- Competition between the 'experts' will:
 - Drive MPEG-4 quality up after deployment of decoders
 - Drive functionality of tools
 - Make AVC beat all proprietary codecs, including WM9

MPEG-2 Coding Efficiency – Harmonic, Inc.'s view

MPEG-2 Coding Efficiency – TandbergTV's view

Reproduced with the kind permission of TANDBERG Television

40

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

Widely adopted and supported

- Industry wide PC media player support
 - QuickTime 6
 - RealOne Player / Helix (Envivio plug-in)
 - DivX: Millions of downloads weekly
 - Windows Media Player: several MPEG-4 plug-ins
- MPEG-4 is part of the standard for 3G and 2.5G mobile phones
 - 3GPP, 3GPP2 adopted MPEG-4 Profiles for video to mobile
 - AAC is the optional audio codec in 3GPP
 - File format is adaptation of MP4
 - QuickTime 6.3 supports 3GPP

Widely adopted and supported

- Recommended by Internet Streaming Media Alliance (ISMA)
 - Vertical spec using horizontal MPEG-4 standard
 - Founded by Sun, Kasenna, IBM, Apple, Cisco, Philips
- MPEG-4 AVC to be adopted by DVB for DVB over
 IP
- Becoming de-facto standard for security, surveillance
- Supported in emerging Home Media Centers

Recent announcements and releases

- MPEG-4 HD-based video camera (Samsung)
- Solid state video cameras (Panasonic, Divio)
- DVD players that read MP4 (Toshiba, Kiss)
- HDTV Chips (Sigma Designs)
- PDA's (Sony's Clie, Sharp's Zaurus)
- Video 'jukeboxes' (e.Digital, Archos)
- Home entertainment gateways (e. Digital, Equator, Sigma, ...)
- Mobile phones that decode and stream MP4 (Nokia, Motorola)

Overview

- What is MPEG-4?
- How does MPEG-4 work?
- Recent Developments in MPEG-4
- Why use MPEG-4?
- Deployment of MPEG-4
- About M4IF

About the MPEG-4 Industry Forum

46

History

- First Meetings 1999
 - What do we need to do to get MPEG-4 adopted?
- Officially Established June 2000
 - Not-for-Profit Organization in Switzerland
- Now approximately 100 members
 - Worldwide
 - Across Industries IT, Telecoms, CE, Academia, content and service providers

Membership includes

• AMD, Agfa Monotype, AOL Time Warner, Apple Computer, Canon, Cisco, DivXNetworks, Dolby, Envivio, Fraunhofer, Fujitsu, Fuji-Xerox PAL, Harmonic, Hitachi, IBM, Intel, InterTrust, iVAST, Matsushita, Microsoft, Mitsubishi, Motorola/GI, MPEG LA, NEC, NTT, Nokia, Oki, PacketVideo, Philips, RealNetworks, Scientific-Atlanta, Siemens, Sony, STMicroelectronics, Sun, TandbergTV, TDK, Tektronix, Thomson, Toshiba, Xilinx and many others (~100 members)

Goal

- Getting MPEG-4 widely adopted
- Doing the things that MPEG does not and can not address
 - Bootstrapping licensing
 - Product interoperability
 - Compliance Program
 - Education, Information Clearinghouse
 - Marketing, Exhibitions

Membership

- 3,000 US\$ per year for full membership
 - Access to meetings, documents,
 - Interop Program
 - Speaking opportunities and co-exhibiting with M4IF
- 300 US\$ for associate membership
 - Same rights, except voting rights

Licensing – the Responsibilities

- MPEG Standardizes
 - And collects Patent Statements
 - But as a rule does not discuss licensing terms
- M4IF initiates, discusses, encourages, suggests, catalyzes, bootstraps
 - But never licenses, determines, decides, ...
 - And does not recommend specific licensing terms (although it may suggest alternative approaches)
- Licensors determine, decide, sell licenses
 - In discussions with the market
 - Usually in patent pools (joint licensing schemes)

Thank you

Further information:

www.m4if.org (website M4IF)

mpeg.tilab.com (website MPEG)

www.apple.com/mpeg4 (Apple's MPEG-4 Pages)