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1 Document Status 
This document is a technical working paper from the ISMA.  It provides a discussion of many of the issues 
and the possible solutions, in tuning in to RTP streams.  A specification can be built from this, taking into 
account the needs of a particular environment or deployment.  Those developing such specifications are 
encouraged to refer to this white paper and liaise their work back to ISMA, in the interests of industry 
convergence. 

2 Introduction 
This paper looks at some of the delays in ‘tune-in’ acquisition of live streams and proposes some 
techniques of general applicability to minimize the delay perceived by the user.  

Though this paper, and the specifications, will detail approaches to minimizing delay, the determination of 
what constitutes an acceptable delay, and hence the specification of which of these techniques are used, and 
their variable parameters (e.g. frequency of random access points) is expected to be left to a deployment, 
unless they impact interoperability. 

3 Problem Statement 
The delay between the initiation of tune-in and initiation of rendering consists of: 

• RTSP negotiation (if requesting streams or stream data) 

• IGMP session joining (if tuning to a multicast session) 

• Network latency 

• Video and audio random access points (RAP) acquisition 

• Client stream buffering (to de-jitter reception, to allow time for re-transmission, acquisition of 
complete forward error correction blocks, or to handle video packet re-ordering) 

• Synchronization between streams (RTCP sender report) 

• Encryption key acquisition 

• End-system delays, such as processing delays 

Consideration of these indicates that the expected dominant causes of delay would be (a) de-jitter buffering, 
especially when traffic smoothing is used and (b) acquisition of a video random access point (RAP). 
Verification experiments should be performed in typical network environments to validate this and acquire 
figures on the various contributions to delay. Some of these delays can be mitigated, while others, such as 
network latency, cannot. It should be emphasized that many of the problems are not specific to RTP but 
arise from coding or other problems. The following sections discuss these delays in more detail. 

3.1 RTSP negotiation 
RTSP is a protocol that can be used to initiate tune-in to a multicast stream or to request a unicast stream 
from a server. When it is used, it can take several packet round-trips of request/response before the RTSP 
server sends the first media packet.  In some situations, this can be significant.  3GPP has done work in this 
area (detailed in later sections). 
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3.2 IGMP session joining  
If the content is multicast on the network, then there are typically no processes operating at the RTP level 
between the source and the client.  Multicast is an efficient distribution protocol for live streams as each 
network link needs carry only one copy of each stream.  Routers in the network replicate streams from 
inputs onto the output links which have one or more clients.  Clients indicate their interest in the multicast 
by sending a special control packet (IGMP), which is intercepted by the router.  The routers in turn refer to 
each other to find, and forward, the packet stream. 

This find-and-forward process (called multicast ‘join’) can, in some circumstances, take some time. 

3.3 RAP acquisition 
Video is classically ‘differentially coded’.  Very few coded frames contain all the information needed to 
create a complete set of decoded pixels.  Instead, frames are coded as differences from one or more other 
frames. 

In order to handle both recovery from loss and tune-in to live streams, ‘independently decodable’ frames or 
I-frames can be sent periodically.  Decoder refresh frames or IDR-frames are I-frames that have the 
additional property that they mark a division of the sequence; frames displayed after the decoder refresh do 
not depend on frames before it.  They are true Random Access Points (RAPs). 

Because these frames are so much larger (in bytes) than differentially coded frames, they are sent rarely in 
order to keep the bit-rate low. A delay occurs when tuning into a new stream, since the decoder must wait 
for a RAP before it can start displaying video.  In addition, their size often means that traffic smoothing 
causes adjustment of their send time and that of adjacent packets. 

3.4 Client buffering 
If there is deviation in the arrival time of packets from the relative timing that they would have if they were 
to arrive just-in-time to be played, then a de-jitter buffer is needed if we are to avoid under-run (starvation).  
This jitter has two causes: deliberately introduced jitter from the source, for traffic smoothing, and network-
introduced jitter (e.g. caused by cross-traffic in network equipment).  The source-introduced jitter tends to 
occur most, or even exclusively, in video, where the variation in coded frame size (in bytes) can be large 
(e.g. I-frames can be many times as large as B frames). 

A buffer is also needed if there is to be time to perform re-transmissions. 

A delay occurs during the time the client fills its buffer before starting to render.  

3.5 Synchronization between streams (RTCP sender report) 
RTP streams have ‘free floating’ timestamps – they have arbitrary origins (and indeed, usually different 
streams have different tick-rates).  In order to synchronize audio and video, their time stamps have to be 
related.  Associated with each stream are periodic RTCP sender reports, which associate the RTP 
timestamps in the stream with a common clock at the transmitter (usually the time-of-day clock, but 
actually any clock is permitted as long as it is common to all streams). 

Until at least one RTCP sender report has been acquired for each stream, the streams cannot be played in 
synchronization.  The only exception to this is that the RTSP control protocol has provision for sending the 
initial synchronization information at the beginning of a play interval.  However, RTSP is not used in all 
situations. 

Thus, the frequency and timing of RTCP reports often contribute to the delay before audio and video are 
rendered, not just to their synchronization, because many clients will not render anything before 
synchronization has been established.  
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3.6 FEC Block boundary acquisition 
Packet level, or Application Layer, Forward Error Correction, if used is usually applied to blocks of packets 
of the stream. Playout of the stream must be delayed at the client by a time equal to the largest such block 
in the stream, to allow time for blocks to be corrected if there is packet loss. Additionally, playout usually 
would not be started until the first packet of an FEC block, since lost packets before this point in the stream 
cannot be corrected by the FEC. 

FEC codes may be systematic or non-systematic. In the case of systematic codes, the original data is sent 
followed by a number of “repair” packets which can be used at a received to recover original (“source”) 
packets which were lost. In some cases, insufficient data may be received to perform the FEC recovery 
operation, in which case the received source packets may be passed to the A/V decoders for playout, 
potentially with loss concealment. 

In the case of non-systematic codes, the original data packets are not sent and instead only FEC encoded 
data is sent. In this case, if the FEC recovery operation is not successful then no data is available for 
playout. 

Systematic codes thus have the advantage that playout with loss concealment may still be possible even if 
the forward error correction is unsuccessful. Further advantages of systematic codes are that in low loss 
scenarios it may not be necessary to apply the forward error correction decoding algorithm at the receiver, 
thus lowering the overall computational load of the FEC and that source data can be transmitted without 
waiting for the FEC encoding operation to complete, reducing the end-to-end delay. 

Since the first packet available for playout is generally the first packet of an FEC block, it is advantageous 
if FEC blocks can be aligned with the random access points (e.g. Groups of Pictures) so that in video this 
first packet is generally an IDR frame. This significantly reduces the additional playout delay incurred as a 
result of the introduction of FEC, since the player needs to wait for an IDR frame in any case. 

FEC may be applied at a location different from that performing the actual video encoding. Therefore 
codec-independent identification of IDR frames within the stream is necessary to avoid re-parsing of the 
video encoding to identify IDR frames for the purpose of aligning FEC blocks. Additionally, FEC is often 
applied after content encryption in which case IDR identification through video content parsing is 
impossible.  

3.7 Encryption keys acquisition 
If the content is encrypted, then the decryption keys must be acquired.  Generally it is not desirable to 
acquire keys too far ahead of need (either for the future of the current stream, or for other potential 
streams).  Since this problem is both independent of RTP, and dependent on the key-exchange method 
used, it is not discussed here. 

3.8 Processing delays 
Processing delays can occur in the terminal at a number of layers – network, RTP, codec, and so on. In 
general, this is a trade-off between terminal resources (memory, processor speed) and cost. However, there 
are recommendations that can be made to minimize the processing load on the end-system, and hence the 
delay. 

4 Solutions 

4.1 In-band Synchronization 
The fact that RTP synchronization is usually provided (and must be provided) in RTCP does not preclude 
its provision by other, additional, means.  Indeed, one has already been noted – its provision in the RTSP 
protocol. 
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Using the header extension defined in http://www.ietf.org/internet-drafts/draft-ietf-avt-rtp-hdrext-05.txt, it 
is possible to provide the time-mapping in selected RTP packets, in-band.  This would take the form of four 
extra 32-bit words in those packets.  (One word indicates that the header extension is in use and the length 
of all the extensions, then there is a one-byte tag and length for this extension, 8 bytes of NTP timestamp, 
and, alas, 3 bytes of padding.) 

This would typically only need to be sent on those packets where the decoding can start – RAP frames in 
video – or their temporally aligned packets in other streams.  These packets are already quite large, as 
noted, and this overhead is small in comparison.  The temporally-aligned audio packets may be small, and 
the extension may be a perceptible enlargement of these packets;  however, the frequency of random access 
points in video should be low enough that overall this is still an acceptable overhead. 

Implementing this scheme eliminates the delay caused by waiting for the RTCP sender reports.  

4.2 Server buffering of content 
If a streaming server is being used for the final distribution of content, then it could buffer the stream so 
that it is able to supply to each client, as it tunes in, a decoder refresh point and its temporally aligned audio 
packet.  Servers doing packet reflection already ‘pace’ their output packet stream, not sending N copies of 
each incoming packet to their N clients simultaneously, but spreading them out in time.  If they buffer each 
decoder refresh interval, providing the beginning of the most recent one, to each client as they tune-in, this 
will have a similar stochastic spreading effect. 

In order to do this, the packet stream is ideally marked in a codec-independent fashion. Indeed, it has long 
been an awkward nature of RTP that random-access points (RAPs) – for tune-in or error-recovery –are not 
marked at the RTP level.  The general header extension mechanism can again be used, marking packets as 
RAPs, or as aligned with the RAP in a synchronized stream (such as a parallel audio stream).  Such 
marking can also label frames which are independently decidable even if not RAPs, or as ‘leaves’ in the 
dependency graph (i.e. no other frame depends on them). 

If buffering every frame of the stream, for the intervals desired, is unacceptable for memory reasons, then 
the server could choose to buffer only video frames that have dependencies, or indeed only I frames. 

There are two ways to use this buffering.  The client may use the unicast content from the server only 
during the tune-in period;  once it has acquired the multicast, and the packet sequence numbers overlap 
between the unicast and multicast feeds, then the unicast can be dropped (the streams splice perfectly).  
Alternatively, it may be desirable to use client-server unicast for the duration of the stream, as this enables 
retransmission and client-server buffer management. 

If the server is performing application-level replication (as opposed to IP multicast, which is network-level) 
then it needs to be placed ‘suitably close’ to the point where the physical transmissions diverge, as it has N 
copies of the input traffic for N clients, on its output link.  This is not necessarily co-located with the router, 
for example, that supplied the CPE.  There are deployment cost trade-offs between many smaller servers 
located close to the routers, and a larger one deeper in the network, with suitable bandwidth out to the 
routers that feed the CPE. 

The load on those routers varies, of course.  If they are replicating multicast, only one packet is received for 
N client packets transmitted, whereas if an upstream server is replicating, then N unicast packets are 
received.  Unicast routing is typically cheaper than multicast routing, but this does represent a change of 
load. 

The tagging is done using the header extension in RTP, referred to above. If the tags for 
video are present in an audio stream, then they provide information about the 
temporally aligned video.  The detailed specification follows in a later section.   
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4.3 Multicast Configuration 
We discuss two methods to reduce delays associated with joining a multicast session. 

Single-source multicast enables the routers to follow normal unicast routing towards the multicast source. 
This does not require special multicast configuration and routing tables, and can be faster. 

Also, on a managed network it is possible to setup the multicasts so that they normally ‘flood’ the network 
down to the last switching node on the network (for instance the DSLAM). The IGMP join is thus limited 
to the last mile and session joining is faster. 

Some systems use SAP for program acquisition;  SAP is a protocol in which program information, in SDP 
format, is multicast at a very low rate.  Since the rate is low, SAP listeners generally have to be 
‘permanently on’ (listening in the background).  The delay that would be caused by waiting for an 
announcement without this background listener could be large, and is completely avoided by the 
background listening and cache. 

4.4 Predictive Tuning (improvement) 
One of the simplest techniques for reducing channel switch times is to predict what channel the user will 
next ask for, and tune that in early.  If there is enough bandwidth, holding open channels that this user often 
watches, or the ‘next’ and ‘previous’ channels (for the channel surfer). 

However, this consumes the bandwidth for multiple streams for each client, and this may use excessive 
bandwidth.  It also does not optimize all stream switches, and so is at best a partial solution. 

For deployments based on VDSL (25-50 Mbps) and FTTH there may be enough bandwidth available and 
the system is designed to handle several streams to each household anyway. In any case, predictive tuning 
is a technique that can be implemented at the client, most probably without the need for additional 
protocols. 

4.5 RTSP Switching 
The following  3GPP SA4 contribution, http://ietfreport.isoc.org/idref/draft-einarsson-mmusic-rtsp-macuri/, 
suggests techniques for reducing delays associated with RTSP handshaking.  This proposes that if the 
channels concerned are indeed channels in a family, then they can presumably share codecs and codec 
settings, screen size, audio channel count etc., and then the usual three round trips to tear-down and setup a 
channel over RTSP can be reduced. 

Clearly round-trip delays by themselves can be optimized (e.g. the SETUPs can be pipelined, or a new 
RTSP command used to switch video and audio streams on existing ports). 

4.6 De-jitter buffering 
Unless the content is encoded at a constant bit-rate, or its peak bit-rate is below the channel rate – 
whereupon no source-side traffic smoothing need occur – there is going to be jitter in the packet arrival 
times, caused by traffic smoothing.  In a managed network the network-induced jitter can be minimized.  

One technique for the client is to notice the first I-frame to arrive, and to display it, even before ‘full 
playback’ has started.  This presents a picture ‘early’ on the screen. 

A more systematic approach is to use a protocol for managing re-transmissions, bandwidth usage, and 
client-side buffer space, such as the one defined by 3GPP 26.234.  If the content bandwidth is lower than 
the network bandwidth, these protocols can build the client-side buffer faster than real-time, so a buffer that 
takes 3 seconds to play out can be built in a second or less. 
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In addition, even if the ‘ideal’ buffer is large, it may be worth risking underflow for a short period, 
deliberately playing the content slightly slowly so that the buffer builds towards a safer value. 

In 3GPP 26.234 <http://www.3gpp.org/ftp/Specs/html-info/26234.htm>, section 6.2.3.3 defines how to 
perform RTP retransmission, and section 10 details a client-server buffer management and link-rate 
adaptation protocol.  Used together, a streaming server and client can both build the de-jitter at faster than 
the link-rate, and then use that buffered period as a window in which re-transmissions can be requested. 

Finally, it is possible to tell the client the ‘ideal’ buffer fill at selected points in a stream (notably on I-
frames in video and the temporally matching audio frames).  Typically, a client is told the buffer 
requirement, and has to fill this buffer before starting playout.  In fact, the fullness needed varies over time, 
and if, in fact, at the chosen point in the stream only a small buffer is needed, the client will wait too long, 
and over-fill, causing both excessive delay and excessive memory usage. 

If the client can be told of the expected buffer fill, then this delay can be minimized.  There is a 
specification below, for this. 

4.7 Side streams 

4.7.1 Low-Resolution Stream 
In order to limit the number of equipments on the network, a second low resolution stream, conveying 
mainly I frames or with a small GOP (IPP for instance) can be sent in parallel when the user changes 
channel. 

This stream will have a small bandwidth, but will deliver an I frame within at most 200ms. This stream will 
be up-scaled to fit in the targeted resolution and used until an I frame arrives on the full resolution / long 
GOP stream. When the full I frame has arrived, the low resolution stream is stopped. 

The solution is scalable as no new servers are required on the network; it just needs other encoders to 
generate this low-resolution stream at the headend. And this stream can also be already present on the 
network to be used for PiP, portable terminals, or for a selection mosaic or channel-guide preview. 

However, a PiP or video mosaic stream may be of too low a resolution; a custom stream may be needed for 
the purpose.  Also, the switching can be done in the network, or at the client side, depending on 
architecture. 

Some experience has indicated that the secondary stream should have these characteristics 

• a quarter-resolution stream is the minimum required for acceptable behavior 

• it should have a GOP frequency of one half to one third of a second.  

• VBR without FEC is acceptable 

• rate-shaping should not be necessary and not used (to minimize jitter, and hence give a small, low-
delay network de-jitter buffer). 

4.7.2 Full resolution stream 
Similar to the approach in the preceding section (‘Low-Resolution Streams’) one can also use a side stream 
with full resolution I frames which are used as tune in frames when the user changes channel.  

Two streams are sent on separate multicast groups. The main stream is coded with fill resolution and high 
quality. In order to conserve bandwidth the main stream has a large I frame distance. In addition to the 
main stream a side stream with closely spaced I frames is created, this stream has a lower temporal 



ISMA Fast RTP tune-in, Version 1.0  17 December, 2007 

 

 

  Page 10 of 14 

Copyright © 2007 Internet Streaming Media Alliance. All Rights Reserved. 

ISMA is a Trademark and Service Mark of Internet Streaming Media Alliance 

resolution compared to the main stream and is called sync.  However, the I frame positions in the sync 
stream match P frame positions in the main stream. 

When a user wants to access a certain channel it first joins the sync stream for that channel. When the user 
starts to receive data on the sync stream the accompanying main stream is joined, as illustrated in Figure 
4-1. When a complete RAP is received from the sync stream that multicast group is left. The RAP in the 
sync is spliced with the main stream forwarded to the decoder and the channel tune in is complete. The 
actual I frame distance of the sync and main stream is not addressed here, but  in general the main I frame 
distance should be larger than the sync I frame distance considering the same time base. 

 

SYNC stream 
 +-----+             +-----+                     +-----+     +-----+ 
 |  I  |             |  I  |                     |  I  |     |  I  | 
 |  n  |     ...     | n+s |          ...        | n+2s| ... | n+qs| 
 +-----+             +-----+                     +-----+     +-----+ 
(optional)                                                 (optional) 
 
 
MAIN stream 
 +-----+ +-----+     +-----+ +-----+ +-----+     +-----+     +-----+ 
 |  I  | |  P  |     |  P  | |  P  | |  P  |     |  P  |     |  I  | 
 |  n  | | n+1 | ... | n+s | |n+s+1| |n+s+2| ... | n+2s| ... | n+qs| 
 +-----+ +-----+     +-----+ +-----+ +-----+     +-----+     +-----+ 
 

Figure 4-1:  SYNC Streams 

The special measures needed to encode the SYNC stream and the treatment of overlapping I frames is not 
addressed in this document.  

4.8 Gradual Client Buffer Build 
The buffer that is in the client to adapt to network jitter or FEC block buffering can be built up over time.  
The client starts playing when it is at the smallest acceptable size, and deliberately plays slowly, thus 
building the buffer.  This may cause more error concealment events early in playback, but this risk may be 
acceptable in return for faster tune-in performance. 

4.9 End-system load minimization 
The impact on end-system load of various aspects of RTP and codec management should be investigated, 
with a view to minimizing the load, and hence processing delay.  It may be that the load can be reduced, for 
example, by using fewer network ports.  (There is a draft before the IETF now on that subject.) 

5 Recommendations 
1. Use the RTP extension as defined above for stream labeling of frame types, dependencies etc., that 

is codec-independent, and also can be applied to other streams in the same content (e.g. “this audio 
frame happens at the same time as a video I-frame”). 

2. Use the extension defined above for in-band periodic transmission of the RTP-NTP (sender report) 
mapping. 
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3. Look at client-server buffer management protocols, particularly 3GPP 26.234 release 6, with a 
view to adopting a ‘fast buffer build’ approach.  Issues to analyze include network equipment 
load, cost, and complexity. 

4. Define how streaming servers doing live stream replication (a.k.a. reflection) can use the meta-
data defined above to provide a better experience.  Issues to analyze include scalability, network 
equipment load, cost, and complexity. 

5. Define how to manage the low resolution streams from the STB perspective 

6. Define the means to get the encryption keys for a live stream. 

7. Define that clients acquire a program by performing an RTSP transaction with a server, even if the 
reply is sometimes the simple instruction ‘join the indicated multicast’.  This enables the operator 
to optimize where, and how, each stream is replicated, and the extent to which it is optimized.  If 
clients assume that all streams can be joined as multicasts, then both flexibility, and many 
optimization opportunities, are precluded. 

6 Architecture 

6.1 Encoder 
1. Use the RTP header extension to insert NTP-RTP time mappings on at least the RAP points in 

video, and possibly more (e.g. all the I frames).  Provide the same mapping also in the audio 
stream, with the same frequency, preferably in packets that are aligned in time with the tagged 
packets in the video.  This permits the clients to acquire synchronization rapidly, and at the 
significant points in the stream. 

2. Use the RTP header extension to tag the streams with dependency information.  This permits 
streaming servers to find the RAP points, or I frames, and optionally discard frames which have 
nothing dependent upon them.  The cross-tagging enables the matching section of audio to be 
buffered also. 

3. Optionally, use the transmission offset RTP header extension to enable the client to recover the 
source clock more rapidly. 

6.2 Server 
1. Build a table of streams that should be buffered (e.g. the commonly used streams).  Buffer also 

any stream that is in use.  Buffer at least one entire interval from the most recent RAP point, but 
consider buffering as much as the client would want as a de-jitter buffer. 

2. Even if the program is available multicast, provide the initial buffer fill to the client using unicast.  
Continue providing packets long enough that the packets from the server and the packets from the 
multicast must have an overlap in sequence numbers, or until the client indicates that is has the 
overlap (e.g. by some kind of RTSP transaction). 

6.3 Client 
1. Always tune-in to streams following an RTSP URL.  If the referenced server is the same as the 

server for the currently open stream, consider using fast RTSP stream-switching.  In any case, 
pipeline setup requests to minimize round-trip delays.  This provides an opportunity for (a) choice 
by the server as to whether the content is unicast or multicast (b) indicating to the server which 
protocol options are in use (c) re-direction etc., as needed. 
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2. If the response to ‘describe’ indicates that the stream is available multicast, nonetheless indicate 
the port setup to the server.  This allows the server to supply the buffered material, to the same 
ports, unicast.  If this happens, indicate to the server when the unicast server ‘pre-fill’ and the 
multicast packets are overlapping, and the unicast feed can stop. 

3. Indicate to the server willingness to take part in client-server buffer management, and in client-
server retransmission.  These enable fast buffer pre-fill, and error recovery. 

4. Look for in-stream sync information and use it if present. 

5. Consider starting playback as early as possible, and building the client-side buffer by deliberately 
playing out slightly slowly. 

7 Specification 

7.1 In-line transmission of time-stamps 
The in-band synchronization header extension is based on the general RTP header extension specification 
[3 ] and may be used in any RTP packet. It is typically only sent on those packets where the decoding can 
start – I frames in video – or their temporally aligned packets in other streams.  

It is functionally similar to the NTP-RTP mapping in sender reports in RTCP [1 ].  As in RTCP sender 
reports, it provides a mapping between an NTP timestamp and an RTP timestamp.  However, note that: 

a) the corresponding RTP timestamp is the RTP timestamp of the packet itself;  it is not provided in 
the header extension. 

b) the NTP timestamp in a sender report also corresponds to the transmission time of the RTCP 
packet.  The inline NTP time does not necessarily correspond to the transmission time, since RTP 
packets are often sent at a different time (e.g. for traffic smoothing).  

If the transmission time must also be known, the transmission offset header extension can also be used [4 ].  
There is an important degenerate case here;  when the packets are, in fact, transmitted at their ‘nominal’ 
RTP time, such that their transmission offset is zero, they may be omitted from the packet.  Thus in the case 
of a packet without the transmission offset extension, there is a difference in meaning between whether the 
extension was declared for the stream (the transmission offset is zero) or not (the transmission offset is 
unknown). 

This header extension has no extension attributes.  The form of it is exactly and only the 8-byte NTP 
timestamp. 

The URI form for declaring this NTP timestamp is (TBD) something like 

http://www.isma.tv/URIs/rtp-ntp-tag.htm 

(ISMA would need to establish the URIs directory as a permanent URL, and populate information on how 
to get the appropriate specification in the indicated HTML document). 

7.2 In-line video frame-type tagging 
The video frame-type tagging is based on the general RTP header extension [3 ] and declares the nature of, 
and dependency characteristics of, the video data contained in an RTP packet. When used in a video 
stream, the statement is about the data contained in that RTP packet.   

When used in another stream that is synchronized with a video stream, the statement is about the video that 
is time-aligned to the packet in which the extension is present.  This allows network nodes (e.g. proxies) to 
find not only the time-points in the video stream that correspond to random access points, but also identify 
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the matching time-points in synchronized audio streams etc. without having to decode the synchronization 
information (such as RTCP sender reports). 

The video tag is a one-byte field with the following values.  This tag may be extended in future with extra 
bytes, which may be ignored if not recognized.  It has the following definition, where the statements all 
concern the video frame(s) of which this packet is supplying some or all the data.  If less than a whole 
frame is present, the statements nonetheless apply to the whole frame (i.e. the sender does not need to 
analyze which parts of the frame have dependency). 

Note that ‘redundant coding’ means that there are multiple encodings of the same video data present in the 
same frame, possibly with different dependency information. The dependency statements concern the 
primary encoding only.  Note also that in AVC (H.264, MPEG-4 part 10), a frame may be an I frame but 
not a random access point. 

The tag definitions are clearly most useful when there is exactly one frame per packet, and frames are in 
decoding order in the stream.  However, in the case of fragmented frames, or multiple frames per packet, 
the tag should still provide useful functionality.  The most difficult case is for fragmented, re-ordered or 
interleaved, data.  In this case, the tags are useful, but ‘extraneous’ data may be entangled with the desired 
data.  For example, a server buffering data from random access points, or a system tuning-in and looking 
for one, can use the RAP bit, since all packets that contain data contributing to a RAP will be marked.  
However, those packets may contain data for frames not needed by the video starting at that RAP forward. 

The form of this tag is drawn from the sample dependency table in the ISO base media file format [2 ]. 
unsigned int(1) reserved = 0; 
unsigned int(1) RAP; 
unsigned int(2) depends_on; 
unsigned int(2) is_depended_on; 
unsigned int(2) has_redundancy; 

 
RAP takes one of the following two values: 

0:  Not known to be part of a random access point 
1:  The video data in this packet contributes to a random access point 

depends_on takes one of the following four values: 
0:  the dependency of the data in this packet is unknown; 
1:  all the frames in this packet depend on other frames (not I pictures); 
2:  none of the frames in this packet depend on other frames (I picture); 
3:  mixed: data from both I pictures and not-I pictures is present 

is_depended_on takes one of the following four values: 
0:  the dependency of other frames on the data in this packet is unknown; 
1:  other frames depend on (some of) the data in this packet (not disposable); 
2:  no other frame depends on any of the data in this packet (disposable); 
3:  reserved 

has_redundancy takes one of the following four values: 
0:  it is unknown whether there is redundant coding in this data; 
1:  all the frames from which this packet is drawn have redundant coding 
2:  none of the frames from which this packet is drawn have redundant coding 
3:  mixed: there are redundantly and non-redundantly coded frames 
 

The URI form for declaring this video characteristics is (TBD) something like 

http://www.isma.tv/URIs/rtp-video-tag.htm 

(ISMA would need to establish the URIs directory as a permanent URL, and populate information on how 
to get the appropriate specification in the indicated HTML document). 
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7.3 In-line buffer fill tagging 
As noted above, the client-side buffer needs to be filled to de-jitter a stream, and this jitter can come from 
two sources:  network-introduced ‘random’ jitter, and source-introduced buffer fullness variation, and 
traffic-smoothing. 

The inline buffer-fullness tag tells the client what is the source’s expected buffer usage (as a result of buffer 
modelling) at selected points in the stream.  This is expressed in-stream as a fraction.  The largest possible 
source-induced buffer is signalled in stream setup. 

When the client wishes to tune-in, it selects a suitable I-frame in video, and a matching frame in audio (as 
tagged, above).  If these have buffer-fullness values, then the client forms a desired-buffer value: 

desired = signalled * fullness + network; 

where the value ‘network’ is the amount of buffer needed to de-jitter the network (which can be quite small 
in a managed network).  If the chosen initial frame of a stream has no fullness value, it is taken to be 100%.  
The client then buffers until all streams have met or exceeded this fullness value, and then may start. 

The URI form for declaring this video characteristics is (TBD) something like 

http://www.isma.tv/URIs/rtp-fullness.htm 

The value is a single byte, restricted to the values 0-100 (101-255 are reserved), indicating the percent 
fullness needed.  The SDP attribute which gives the overall signalled size is TBD. 
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